Notazione degli insiemi

Secondo la notazione matematica un insieme viene indicato con una lettera maiuscola dell’alfabeto mentre le lettere minuscole stanno a rappresentare i singoli elementi che compongono l’insieme stesso.

L’appartenenza o meno viene indicata rispettivamente con i simboli , e si usa nel seguente modo: a ∈ A ⇒ “l’elemento a appartiene all’insieme A” a ∉ B ⇒ "l’elemento a non appartiene all’insieme B"

Per rappresentare gli elementi di un insieme si possono usare due notazioni delimitate dalle parentesi graffe:

  • Rappresentazione estensiva:
    Prevede di elencare uno a uno tutti gli elementi di un insieme separandoli con una virgola. Come si può intuire, all’aumentare degli elementi o se questi diventino infiniti questa notazione, oltre ad essere pesante, potrebbe non essere esaustiva.


    Esempio 1: Sia A l’insieme dei numeri naturali strettamente minori di 5A ≔ {0, 1, 2, 3, 4}


    Esempio 2: Sia B l'insieme dei numeri naturali strettamente maggiori di 10B ≔ {11, 12, 13, ...}


    Si può notare che essa non è esaustiva e occorre l’utilizzo dei tre punti di sospensione per indicare che l’elencazione prosegue all’infinito.

  • Rappresentazione intensiva:
    Consiste nell’indicare tutti gli elementi di un insieme enunciando una o più proprietà tra essi in comune. A differenza della rappresentazione estensiva, è esauriente anche nel caso di insiemi infiniti di elementi e si presenta generalmente molto più leggera.


    Esempio 3: riprendendo gli esempi precedenti, gli insiemi A e B si possono riscrivere come: A ≔ {x tale che x è un numero naturale minore di 5} B ≔ {x tale che x è un numero naturale maggiore di 10}


    oppure più sinteticamenteA ≔ {x | x ∈ ℕ ⋀ x < 5}B ≔ {x | x ∈ ℕ ⋀ x > 10}

    NOTA: è importante prestare attenzione e specificare l’insieme da cui prendiamo i nostri elementi. Nell’esempio 3 senza la condizione x ∈ ℕ non avremmo indicato gli stessi insiemi degli esempi 1 e 2 poiché, se non specificato, generalmente si assume come insieme di partenza quello dei numeri reali.


    Esempio 4: dato C ≔ {x | x < 5} si ha che C ≠ A nell’esempio 3. Infatti preso un numero x ∈ ℝ ma x ∉ ℕ, ovvero x ∈ ℝ\ℕ, si ha che x ∈ C ⋀ x ∉ A; x potrebbe essere 2.5 o 𝜋.